RELATIVE INFORMATION FUNCTIONAL OF RELATIVE DYNAMICAL SYSTEMS
author
Abstract:
In this paper by use of mathematical modeling of an observer [14,15] the notion of relative information functional for relative dynamical systemson compact metric spaces is presented. We extract the information function ofan ergodic dynamical system (X,T) from the relative information of T fromthe view point of observer χX, where X denotes the base space of the system.We also generalize the invariance of the information function of a dynamicalsystem , under topological isomorphism, to the relative information functional.
similar resources
relative information functional of relative dynamical systems
in this paper by use of mathematical modeling of an observer [14,15] the notion of relative information functional for relative dynamical systemson compact metric spaces is presented. we extract the information function ofan ergodic dynamical system (x,t) from the relative information of t fromthe view point of observer χx, where x denotes the base space of the system.we also generalize the inv...
full textOn Relative Semi-Dynamical Systems
In this paper the notion of minimality is extended to relative semi-dynamical systems. We consider transitivity from the point of view of an observer which is a fuzzy set. Relative topological entropy of a relative semi-dynamical system as an invariant object of relative conjugate relations is studied. Finally illustrated example in polynomial functions is given to explain the idea of the paper.
full textRelative rotation rates for driven dynamical systems.
Relative rotation rates for two-dimensional driven dynamical systems are defined with respect to arbitrary pairs of periodic orbits. These indices describe the average rate, per period, at which one orbit rotates around another. These quantities are topological invariants of the dynamical system, but contain more physical information than the standard topological invariants for knots, the linki...
full textRelative controllability of fractional dynamical systems with delays in control
Keywords: Relative controllability Time delays Distributed delays Fractional derivative Mittag–Leffler function a b s t r a c t This paper is concerned with the controllability of nonlinear fractional dynamical systems with time varying multiple delays and distributed delays in control defined in finite dimensional spaces. Sufficient conditions for controllability results are obtained using the...
full textobservational dynamical systems
چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...
15 صفحه اولMeasuring Dynamical Prediction Utility Using Relative Entropy
A new parameter of dynamical system predictability is introduced that measures the potential utility of predictions. It is shown that this parameter satisfies a generalized second law of thermodynamics in that for Markov processes utility declines monotonically to zero at very long forecast times. Expressions for the new parameter in the case of Gaussian prediction ensembles are derived and a u...
full textMy Resources
Journal title
volume 2 issue 2
pages 17- 28
publication date 2014-12-21
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023